9 research outputs found

    Modeling a bacterial ecosystem through chemotaxis simulation of a single cell

    Get PDF
    International audienceWe present in this paper an artificial life ecosystem in which bacteria are evolved to perform chemotaxis. In this system, surviving bacteria have to overcome the problems of detecting resources (or sensing the environment), modulating their motion to generate a foraging behavior, and communicating with their kin to produce more sophisticated behaviors. A cell’s chemotactic pathway is modulated by a hybrid approach that uses an algebraic model for the receptor clusters activity, an ordinary differential equation for the adaptation dynamics, and a metabolic model that converts nutrients into biomass. The results show some analysis of the motion obtained from some bacteria and their effects on the evolved population behavior. The evolutionary process improves the bacteria’s ability to react to their environment, enhancing their growth and allowing them to better survive. As future work, we propose to investigate the effect of emergent bacterial communication as new species arise, and to explore the dynamics of colonies

    Evolution and adaptation of artificial creature's behaviors in a simulated ecosystem

    No full text
    De par son enjeu Ă©cologique important, l’étude des relations des ĂȘtres vivants entre eux et avec leur environnement est un dĂ©fi majeur de la biologie. Le travail de cette thĂšse s’inscrit dans le cadre de la vie artificielle, domaine scientifique destinĂ© Ă  l’étude du vivant par la crĂ©ation de phĂ©nomĂšnes naturels dans des systĂšmes de synthĂšse. Le but de la recherche consiste Ă  exploiter la force des techniques Ă©volutionnaires pour faire Ă©merger des comportements de crĂ©atures artificielles, dans un Ă©cosystĂšme simulĂ©. La problĂ©matique gĂ©nĂ©rale de cette thĂšse est de faire Ă©voluer des crĂ©atures artificielles capables de comportements de recherche de nourriture. Deux modĂšles ont Ă©tĂ© dĂ©veloppĂ©s. Le premier modĂšle consiste Ă  exploiter la chimiotaxie bactĂ©rienne afin de surmonter les problĂšmes de dĂ©tection des ressources (ou de l’environnement). La voie chimiotactique d’une cellule est modulĂ©e par une approche hybride qui utilise un modĂšle algĂ©brique de l’activitĂ© des groupes rĂ©cepteurs, et des Ă©quations diffĂ©rentielles pour la dynamique d’adaptation, ainsi qu’un modĂšle mĂ©tabolique qui convertit des nutriments en biomasse. Dans la partie rĂ©sultats, nous avons dĂ©veloppĂ© une certaine analyse du mouvement obtenu Ă  partir de certaines bactĂ©ries et leur influence sur le comportement de la population Ă©voluĂ©e. Nous avons pu constater que le processus Ă©volutif amĂ©liore la capacitĂ© des bactĂ©ries Ă  rĂ©agir dans leur environnement ainsi que leurs capacitĂ©s de croissance leur permettant de mieux survivre. Ensuite, nous avons Ă©tudiĂ© l’effet de la communication bactĂ©rienne qui permet de faire Ă©merger de nouvelles espĂšces, et qui explore la dynamique des colonies. Certains des comportements obtenus ont Ă©tĂ© testĂ©s dans des environnements diffĂ©rents afin de montrer la façon dont la communication bactĂ©rienne peut affecter leurs comportements. Le deuxiĂšme modĂšle est celui du dĂ©veloppement de crĂ©atures 3D physiquement simulĂ©es (les herbivores) qui se nourrissent des ressources disponibles dans leur milieu. Un algorithme gĂ©nĂ©tique couplĂ© Ă  un rĂ©seau de neurones artificiel ont Ă©tĂ© mis en Ɠuvre afin de garantir l’émergence de certains de ces comportements tels que la recherche de nutriments qui sont disposĂ©s Ă  diffĂ©rents endroits dans l’écosystĂšme artificiel. Le processus Ă©volutif utilise les propriĂ©tĂ©s physiques des crĂ©atures virtuelles et une fonction multi-objective externe qui mĂšneront aux comportements espĂ©rĂ©s. L’expĂ©rience consistant Ă  faire Ă©voluer des crĂ©atures virtuelles possĂ©dant des capacitĂ©s de locomotion montre que ces crĂ©atures virtuelles tentent d’obtenir au moins une des sources alimentaires disposĂ©es sur leurs trajectoires. Nos meilleures crĂ©atures sont capables d’atteindre plusieurs sources alimentaires durant le temps imparti Ă  la simulation.Because of its important ecological underpinnings, the study of interactions between animals as well as with their environment is a research area of major interest in Biology. The work in this thesis belongs to the field of Artificial Life, a scientific discipline devoted to the study of natural phenomena inherent to living organisms by reproducing them by synthetic means. The aim of this research is to exploit the power of evolutionary techniques to cause behaviors of artificial creatures to emerge in a simulated ecosystem. The overarching problematic of this thesis is to evolve foraging behaviors in artificial creatures. Two models have been developed. The first model exploits bacterial chemotaxis to overcome the problem of resource detection (or features in its environment). The cell chemotactic pathway is modulated by a hybrid approach that reproduces the receptor group activity using an algebraic model, the adaptation dynamics using differential equations, as well as a metabolic model that converts nutrients into biomass In the results section, we developed a type of analysis of motion from selected bacteria and their influence on the evolved population’s behavior. We observed that the evolutionary process improves the bacteria’s capacity to react to their environment as well as their ability to grow, effectively improving their ability to survive. We then studied the effect of bacterial communication that allows new species to emerge, which exploits colony dynamics. Some of the obtained behaviors have been tested in separate environments in order to show how inter-bacterial communication can impact their behavior. The second model is about the development of 3D physically realistic creatures (herbivores) that feed on resources available in their environment. A genetic algorithm coupled to a neural network guarantees the emergence of a variety of behaviors such as the search of nutrients that are spread across the virtual ecosystem. The evolutionary process takes advantage of the virtual creature’s physical properties and an external multimodal fitness function to lead to the expected behaviors. Experiments designed to evolve virtual creatures displaying locomotion abilities shows that they attempt to reach at least one of the food sources placed on their trajectory. Our best creatures are able to reach multiple food sources within the imparted simulation time

    Evolution et adaptation de comportements de créatures artificielles dans un écosystÚme simulé

    Get PDF
    De par son enjeu Ă©cologique important, l’étude des relations des ĂȘtres vivants entre eux et avec leur environnement est un dĂ©fi majeur de la biologie. Le travail de cette thĂšse s’inscrit dans le cadre de la vie artificielle, domaine scientifique destinĂ© Ă  l’étude du vivant par la crĂ©ation de phĂ©nomĂšnes naturels dans des systĂšmes de synthĂšse. Le but de la recherche consiste Ă  exploiter la force des techniques Ă©volutionnaires pour faire Ă©merger des comportements de crĂ©atures artificielles, dans un Ă©cosystĂšme simulĂ©. La problĂ©matique gĂ©nĂ©rale de cette thĂšse est de faire Ă©voluer des crĂ©atures artificielles capables de comportements de recherche de nourriture. Deux modĂšles ont Ă©tĂ© dĂ©veloppĂ©s. Le premier modĂšle consiste Ă  exploiter la chimiotaxie bactĂ©rienne afin de surmonter les problĂšmes de dĂ©tection des ressources (ou de l’environnement). La voie chimiotactique d’une cellule est modulĂ©e par une approche hybride qui utilise un modĂšle algĂ©brique de l’activitĂ© des groupes rĂ©cepteurs, et des Ă©quations diffĂ©rentielles pour la dynamique d’adaptation, ainsi qu’un modĂšle mĂ©tabolique qui convertit des nutriments en biomasse. Dans la partie rĂ©sultats, nous avons dĂ©veloppĂ© une certaine analyse du mouvement obtenu Ă  partir de certaines bactĂ©ries et leur influence sur le comportement de la population Ă©voluĂ©e. Nous avons pu constater que le processus Ă©volutif amĂ©liore la capacitĂ© des bactĂ©ries Ă  rĂ©agir dans leur environnement ainsi que leurs capacitĂ©s de croissance leur permettant de mieux survivre. Ensuite, nous avons Ă©tudiĂ© l’effet de la communication bactĂ©rienne qui permet de faire Ă©merger de nouvelles espĂšces, et qui explore la dynamique des colonies. Certains des comportements obtenus ont Ă©tĂ© testĂ©s dans des environnements diffĂ©rents afin de montrer la façon dont la communication bactĂ©rienne peut affecter leurs comportements. Le deuxiĂšme modĂšle est celui du dĂ©veloppement de crĂ©atures 3D physiquement simulĂ©es (les herbivores) qui se nourrissent des ressources disponibles dans leur milieu. Un algorithme gĂ©nĂ©tique couplĂ© Ă  un rĂ©seau de neurones artificiel ont Ă©tĂ© mis en oeuvre afin de garantir l’émergence de certains de ces comportements tels que la recherche de nutriments qui sont disposĂ©s Ă  diffĂ©rents endroits dans l’écosystĂšme artificiel. Le processus Ă©volutif utilise les propriĂ©tĂ©s physiques des crĂ©atures virtuelles et une fonction multi-objective externe qui mĂšneront aux comportements espĂ©rĂ©s. L’expĂ©rience consistant Ă  faire Ă©voluer des crĂ©atures virtuelles possĂ©dant des capacitĂ©s de locomotion montre que ces crĂ©atures virtuelles tentent d’obtenir au moins une des sources alimentaires disposĂ©es sur leurs trajectoires. Nos meilleures crĂ©atures sont capables d’atteindre plusieurs sources alimentaires durant le temps imparti Ă  la simulation

    Modeling a bacterial ecosystem through chemotaxis simulation of a single cell

    Get PDF
    International audienceWe present in this paper an artficial life ecosystem in which the genes in the genome encode chemotaxis of bacteria that aim at: detecting resources (or sensing the environment), controlling the bacteria motion and producing a foraging behavior, and allowing bacteria to communicate together to obtain more sophisticated behaviors. The chemotaxis network of a cell is modulated by a hybrid approach that uses an algebraic model for the receptor clusters activity and an ordinary differential equation for the adaptation dynamics, and a metabolism model that is based on the transformation of matter from 'food'. The results show analysis of the motion obtained by some bacteria and their effects on the population behaviors generated by evolution. This evolution allows bacteria to have the ability to adapt themselves to better growth in the environment and to survive. As future work, we aim to improve the effect of the communication between bacteria to obtain bacteria that can emerge as new species,and to integrate the concept of colonies

    Following food sources by artificial creatures in a virtual ecosystem

    No full text
    International audienceIn this chapter a virtual ecosystem environment with basic physical law and energy concept has been proposed, this ecosystem is populated with 3D virtual creatures that are living in this environment in order to forage food. Artificial behaviors are developed in order to control artificial creatures. Initially, we study the behavior of herbivore’s creatures, which feed resources available in their environment. A genetic algorithm with an artificial neural network were implemented together to guarantee some of these behaviors like searching food. Foods are presented in different locations in the virtual ecosystem. The evolutionary process uses the physical properties of the virtual creatures and an external fitness function with several objectives that will conduct to the expected behaviors. The experiment evolving locomoting virtual creatures shows that these virtual creatures try to obtain at least one of the food sources presented in their trajectories. Our best-evolved creatures are able to reach multiple food sources during the simulation time

    Intelligent cell using on-line GRN policy enzyme

    Get PDF
    International audienceNowadays, morphogenetic engineering (ME) [1] is inspired by biological systems (embryogenesis) to export their self-formation capabilities to engineered autonomous systems. As cells are intelligent by nature, researchers of ME are trying to recreate this intelligence in artificial systems, so that these cells know how and when to act in order to accomplish a specific function (e.g. Build an organism)
    corecore